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Abstract— Hybrid robotic systems represent a novel 
research field, where functional electrical stimulation (FES) is 
combined with a robotic device for rehabilitation of motor 
impairment. Under this approach, the design of robust FES 
controllers still remains an open challenge. In this work, we 
aimed at developing a learning FES controller to assist in the 
performance of reaching movements in a simple hybrid robotic 
system setting. We implemented a Feedback Error Learning 
(FEL) control strategy consisting of a feedback PID controller 
and a feedforward controller based on a neural network. A 
passive exoskeleton complemented the FES controller by 
compensating the effects of gravity. We carried out 
experiments with healthy subjects to validate the performance 
of the system. Results show that the FEL control strategy is 
able to adjust the FES intensity to track the desired trajectory 
accurately without the need of a previous mathematical model.  

I. INTRODUCTION 

Stroke is a leading cause of adult disability around the 
world. According to the World Health Organization, 15 
million people worldwide suffer a stroke each year [1]. Motor 
impairment is a common consequence after a stroke, which 
impacts the patients’ quality of life (e.g. loss of motor 
function and control) negatively. Rehabilitation therapy plays 
an essential role in the patients’ recovery. However, after 
completing conventional treatments, many patients are left 
with limited reaching and grasping capabilities. 

It has been shown that functional electrical stimulation 
(FES) has a positive effect for rehabilitation of upper limb 
motor functions in the stroke population [2], [3]. 
Furthermore, it has been reported that the use of FES aids to 
preserve and restore muscle mass and its function after a 
period of reduced activity [4], as well as to stimulate cortical 
reorganization after the neurological injury [5]. However, the 
non-physiological motor unit recruitment, the lack of muscle 
selectivity, and the need of a large amount of power to 
support the arm during reaching movements hinder the wide 
use of FES technologies in clinical settings. Of relevance in 
this study, these drawbacks prevent the proper assistance of 
reaching movements accurately in unconstrained spaces and 
they generally lead to a fast and accentuated occurrence of 
muscle fatigue. 
 
*This work has been done with the financial support of the Ministry of 
Science and Innovation of Spain, project HYPER (CSD 2009-00067 Hybrid 
Neuroprosthetic and Neurorobotic Devices for Functional Compensation 
and Rehabilitation of Motor Disorders).  

F. Resquín, J. Gonzalez-Vargas, J. Ibáñez and J. L. Pons are with the 
Neural Rehabilitation Group, Spanish National Research Council (CSIC), 
Madrid, Spain. (corresponding author e-mail: franresquin@gmail.com).  

F. Brunetti is with Catholic University, Asunción, Paraguay. 

Hybrid approaches, combining FES with robotic devices 
have emerged over the last years as a way to overcome these 
limitations, and to generate a more robust and natural 
solution for rehabilitation [6]. The design of robust FES 
controllers is an important part of such systems. The limited 
time available during clinical trials makes it desirable that 
systems present simple designs with minimum parameters to 
be set up. 

Freeman et al. in [7] presented the use of the iterative 
learning control (ILC) algorithm to control the arm response 
when using FES for reaching rehabilitation. This strategy 
allows the adjustment of FES intensity based on the resulting 
tracking error of previous movements. However, the 
approach requires a mathematical description of the 
musculoskeletal system. Due to the high complexity of such 
system and the simplifications typically assumed to derive 
the models, the applicability of these approaches for clinical 
purposes is limited. Additionally, there is a need to determine 
a large number of parameters, which represent a time-
consuming and difficult to reproduce task in a clinical 
environment.  

Kawato [8] proposed the Feedback Error Learning (FEL) 
scheme, which describes how the central nervous system 
acquires the internal models of the body. In this scheme, the 
motor control command of a feedback control loop is used to 
train a feedforward model that learns to anticipate the motor 
output command. This approach can be implemented using a 
neural network (NN) to learn the inverse dynamic of the 
controlled system, taking the output of a conventional 
feedback controller as a training signal. The main advantage 
of this strategy compared to similar approaches (e.g. ILC) is 
that the system does not require an explicit model of the 
controlled system and only requires a few parameters to work 
correctly. This results in a simple approach that is easy to 
deploy in clinical settings. Previous studies showed that the 
FEL scheme can be used to control the hand and leg motion 
with FES [9]–[11]. However, this control strategy has never 
been tested in a hybrid system for rehabilitation of reaching 
movements.   

The main objective of this paper is to present the design 
and the implementation of the FEL controller to guide the 
movement of the shoulder and elbow joints with FES. The 
controller is used in a simple hybrid robotic system, 
complementing the FES assistance with a passive 
exoskeleton to compensate the effects of gravity.  

II. SYSTEM OVERVIEW 

Typically, stroke patients suffer from an over-activity of 
flexor muscles of the arm and activity loss in the triceps, 
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anterior deltoids and finger extensor muscles [13]. This is 
why the present system focuses on aiding users to move their 
paretic arm towards distal directions in 3D space. The general 
overview of the developed hybrid rehabilitation system is 
shown in Fig 1. The principal components of the system are 
the assistive devices (upper limb exoskeleton and FES 
device), the High-Level Controller (HLC) and the 
configuration interface. 

The hybrid assistance is given by the upper limb 
exoskeleton, Armeo Spring® (Hocoma, Switzerland), and the 
IntFES stimulator (Technalia, Spain). The stimulator 
generates biphasic electrical pulses and allows stimulating in 
a frequency range from 1 to 400 Hz, with pulse amplitudes 
from 1 to 50 mA and pulse widths from 50 to 1000 us.  

The HLC is implemented in a PC104 architecture running 
under the xPC Target® operating system (The MathWorks 
Inc.) for real-time operation. This component estimates the 
arm joint location, generates the reference trajectory and 
executes the FES control algorithm. Finally, a dedicated 
computer acquires the joint angles of the exoskeleton and it 
sends this information to the HLC. Also, it allows the 
configuration of the therapy parameters (e.g., maximum FES 
intensity, range of movement, arm trained, etc.). 
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Figure 1. A General overview of the hybrid robotic system for reaching 
rehabilitation. 

III. FES CONTROLLER 

A. Human Arm 
We approximated the position of the human arm joints 

using the rotation axes of position transducers embedded in 
the exoskeleton by considering several assumptions. First, we 
assumed a parallel arrangement of the human arm with the 
exoskeleton (Fig. 2A). Second, we assumed that stimulation 
of the triceps produces a moment about an axis orthogonal to 
both the forearm and the upper arm and stimulation of the 
anterior deltoids produces a moment about an axis fixed with 
respect to the shoulder. Therefore, the same objective 
transformation as the one used in [14], [15] was implemented 
to determine the arm axes (shoulder and elbow) and define 
their positions given by the vector Ø = [Ø1, Ø2, Ø3, Ø4, Ø5] 
(see Fig. 2B). 

B. Feedback Error Learning based controller 
We considered that the controlled system is composed of 

two single-input, single-output (SISO) system. Thus, the 
movement of the forearm and upper arm are independent of 
each other. This consideration allows us to implement two 
independent FEL controllers, one for each joint. Each 
controller consisted of a proportional-integral-derivative 
(PID) feedback controller combined with feedforward control 
based on a neural network (NN), as shown in Fig. 3. The 
controlled system was underactuated since the assistance was 
applied only at the Ø2 and Ø5 axes. As was stated in [14], 
[15], the freedom of movement in the remaining joints (Ø1, 
Ø3, and Ø4) yields a more natural movement response. 

θ1 θ2

θ3

θ3’

θ4

θ5

Ø1

Ø2

Ø3
Ø4

Ø5

A B  
Figure 2. A) Exoskeleton joint axes rotation; B) Human arm joint axes 
rotation. 

The input for the feedback loop was the desired position 
profile while the input for the feedforward loop was the 
desired position, velocity and acceleration profiles. Positive 
output values of the controller generated muscle motor unit 
activations while negative values were ineffective and could 
lead to windup the integral term of the feedback controller. 
However, negative values were required for the FEL to learn. 
Therefore, we implemented a delimiter that prevented the 
integral windup. The PID constant parameters were adjusted 
using the Ziegler and Nichols method, taking the average 
movement responses in healthy subjects. 

C. Feedforward learning controller 
The implemented feedforward loop of the FEL controller 

learned the nonlinear inverse dynamic of the musculoskeletal 
system by receiving as input the desired kinematic profile 
and using the output of the feedback loop as the correction 
parameter [9]. This learning process was kept along the 
execution of each movement and the output of the feedback 
loop tended to zero as the learning proceeds evolved. 

The NN was defined as a three-layer perceptron network. 
This network relied on nine input, nine hidden nodes, and one 
output node. The input and hidden layers had an additional 
bias node (value -1). The kinematic data used for the NN was 
calculated beforehand, and it was normalized in the range of -
1 to 1 to generate faster learning rates. The NN was trained 
using the gradient descent algorithm [16]. The NN weights 
were initialized with small random values close to zero, 
which were updated during the movement executions at each 
sample time. 

D. Reference Generator 
To generate the tracking references, we used the method 

described by Flash and Hogan [17]. They derived a 
mathematical expression that describes the way in which the 
central nervous system moves the hand smoothly from one 
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point to another. They called this function the minimum jerk 
trajectory, and it only requires the target and the duration of 
the desired position to describe the trajectory completely. 
Robotic rehabilitation systems like the MIT-Manus and Arm 
Guide have also used this function as reference [18]. In this 
experiment, we generated the profiles for the position, the 
velocity, and the acceleration.  
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Figure 3. Functional electrical stimulation (FES) control scheme. Block 
diagram of the implemented feedback error learning controller for single 
joint. Ør is the reference trajectory, Øh is the measured joint angle 
corresponding to the anterior deltoid or triceps axes, Tf is the torque 
generated at the musculoskeletal system due to the FES, Th is user voluntary 
contribution to movement and Tg is the contributed torque for arm weight 
compensation. 

IV. EXPERIMENT SETTINGS 
Seven healthy subjects participated in the study. They 

gave their informed consent to take part in the experiment. 
Subjects were asked to execute a set of twelve movements. 
They were instructed to keep their arms passive, without 
making any voluntary effort, while the FES activated the 
target muscles (anterior deltoids and triceps).  

The ArmeoSpring was adjusted according to the subjects’ 
arm lengths. The level of support was regulated such that 
their arm was kept about their thigh in the horizontal plane. 
Surface electrodes (Pals platinum - rectangle 5x5) were 
attached to the anterior deltoids and triceps muscles. The 
maximum pulse amplitude was determined by increasing 
gradually the current of the stimulator, with a fixed pulse 
width of 450 µs, until a comfortable motor response was 
observed. The FEL control modified the pulse width of the 
stimulation during movement execution to adjust the level of 
assistance. The pulse width was modulated in the range of 50 
to 450 us. 

To define the maximum range of movement and 
determine the target position, we applied the maximum 
electrical stimulation intensity simultaneously to both 
muscles and recorded the resulting movement. After 
analyzing the recording data, the target position was defined 
as the maximum articular angle achieved at each joint 
(shoulder and elbow). These maximum angles were used in 
the minimum jerk function to generate the reference 
trajectory. In all trials, a period of three seconds was used to 
drive the arm from the starting position to the target. 

V. RESULTS 
To analyze the actuation control signal of the FEL 

controller, we calculated the power ratio (PR) between the 
feedforward and the feedback controllers across trials. The 
PR was defined as the relation between the squared value of 
the stimulation intensity (output power) of the feedforward or 
at the feedback loop, and their sum. This analysis allows us 

to evaluate the learning rate since the feedforward controller 
should produce the full actuation command to drive the 
movement once the inverse dynamic model of the controlled 
system has been learned. The first row of Fig. 4 shows the PR 
for the feedback (Ufb) and feedforward (Uff) controllers for 
the shoulder (Ø2) and elbow (Ø5) joints. It is shown that from 
the fourth trial, the assistance is almost given entirely by the 
feedforward controller in both cases. 
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Figure 4. Evolution of the Power Ratio (PR) for the control action of the 
feedback (ufb) and feedforward controllers (uff). The left plot illustrates the 
PR index at the shoulder joint (Ø2) while the right represents the result for 
the elbow joint (Ø5). 
 

The second analysis relies on the calculation of the root 
mean square (RMS) error for each trial. Fig. 5 depicts the 
evolution of the RMS error for each participant (n=7) during 
the execution of the twelfth trial. Here, the black line 
represents the average RMS error for all subjects, and the 
shaded area is the width of the standard deviation with 
respect to the average. It is observed that, for both joints, the 
error was reduced as the number of executed tasks increased. 
This points out that the FEL algorithm can learn the dynamic 
of the movements, resulting in enhancements of the tracking 
accuracy. 

Fig. 6 shows the joints (shoulder -left- and elbow –right-) 
tracking accuracy during the first, fourth and twelfth 
movement execution. This result shows that after the fourth 
trial execution, the trajectory error (row 2) was significantly 
decreased in both joints (blue and green lines). However, the 
difference between the fourth and twelfth trials is smaller. 
This is in agreement with Fig. 5, where the first movements 
present a bigger slope in the learning curve. As learning 
proceeds, the corresponding slope flattens resulting in the 
final learned model. In regards to the actuation signal, Fig. 7 
depicts that in the first movement, most of the output is given 
by the feedback loop (row 1, red line). However, after the 
learning process, the output is mainly due to the learned 
model (row 2 and 3, blue line). At this point, the feedback 
loop is only compensating for small disturbances in the 
movements. This compensation causes a ripple in the output, 
as shown in the figure. However, lowering the gains of the 
PID controller can effectively reduce this ripple.  

VI. CONCLUSION 
We have implemented an FES controller based on the 

Feedback Error Learning (FEL) scheme to assist a reaching 
movement. We combined this controller with a passive 
exoskeleton into a simple hybrid robotic system setting. The 
controller adjusted dynamically the FES at the shoulder and 
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elbow simultaneously to track the desired trajectory. The 
FEL algorithm was able to learn the inverse dynamic of the 
system and reduced the error within acceptable ranges.  

This controller is very attractive to use in clinical 
environments since it achieves good accuracy in tracking a 
movement without needing a mathematical description of the 
musculoskeletal system of the patient. Also, it only needs a 
few parameters to work. Furthermore, due to its learning 
capabilities, this controller could be implemented in a full 
hybrid robotic system with an active exoskeleton.  

Usability tests with stroke patients will be addressed in 
future work. These tests will verify the capability of the 
controller to learn the inverse dynamics and adjust the level 
of assistance when spasticity and other alterations due to 
stroke are present. 
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Figure 5. Evolution of the root mean squared error over the execution of the 
trial for the shoulder (Ø2) and elbow joints (Ø5). 
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Figure 6. An example of the controller performance for participant 1. A) 
Tracking accuracy during trial 1 (blue), trial 4 (green) and trial 12 (red) for 
shoulder (left) and elbow (right) joints; B) Error trajectory of each trial (1 -
blue-, 4 -green- and 12 –red-). 

-200
0

200
400
600

utotal ufb uff

-200
0

200
400
600

-200
0

200
400
600

-200
0

200
400
600

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4

-200
0

200
400

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4-200

0
200
400

PW
 [u

s]
PW

 [u
s]

PW
 [u

s]

PW
 [u

s]
PW

 [u
s]

PW
 [u

s]

A

B

C

 
Figure 7. A), B) and C) The output of the FEL controller during the first, 
fourth and twelfth movement execution respectively for the shoulder (left) 
and elbow (right) joints; black: total actuation signal; red: actuation given by 
the feedback loop; blue: actuation signal given by the feedforward loop. 
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