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Abstract—In dysphagia the ability of elevating the larynx
and hyoid is usually impaired. Electromyography (EMG) and
Bioimpedance (BI) measurements at the neck can be used to
trigger functional electrical stimulation (FES) of swallowing
related muscles. Nahrstaedt et al. [1] introduced an algorithm to
trigger the stimulation in phase with the voluntary swallowing
to improve the airway closure and elevation speed of the larynx
and hyoid. However, due to non-swallow related movements
like speaking, chewingor headturning, stimulations might be
unintentionally triggered. So far a switch was used to enable
the BI/EMG-triggering of FES when the subject was ready
to swallow, which is inconvenient for practical use. In this
contribution, a range image camera system is introduced to
obtain data of head, mouth, and jaw movements. This data is
used to apply a second classification step to reduce the number
of false stimulations. In experiments with healthy subjects, the
amount of potential false stimulations could be reduced by 47%
while 83% of swallowing intentions would have been correctly
supported by FES.

I. INTRODUCTION

The EMG and BI signals measured at the larynx show
specific patterns during swallowing [2]. The intention to
swallow results in an increased activity of the EMG. As soon
as the larynx starts to elevate a decent in the bioimpedance
can be observed. These patterns can be used to trigger FES
in phase to the swallowing intention [1].

FES is applied over two surface stimulation electrodes
which are submentally attached. Stimulation pulses with
a frequency of 30 Hz, which have a maximum current
amplidude of 25 mA and a maximum pulse width of 500
µs, amplify the muscle contraction during swallowing and
help the patient to swallow by elevating the larynx and
hyoid. The stimulation is applied until the bioimpedance
value rises again which indicates the end of the pharyngeal
swallowing phase. Unfortunately, swallowing-like patterns in
EMG and BI can also be generated by head movements,
talking, chewing or food intake and lead to false stimu-
lation triggering. To achieve a more comfortable therapy
for dysphagia patients, an improvement of the stimulation
triggering is needed. Range image cameras such as the Intel
RealSense are capable to detect movements of the head and
mouth. The color- and depth image data is used to track
parts of the face by calculating landmarks that are placed on
designated positions on the face Fig. 1 shows the positions
of the landmarks, that are placed by the Intel RealSense face
tracking algorithm1, as well as the measurement electrodes
for EMG/BI measurement at the neck.

We use the camera data to extend the classification pro-
cess by a second classifier. The flow chart in Fig. 2 illustrates
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Figure 1. Positions of landmarks as given by Intel RealSense.

the complete classification process. The EMG/BI signals,that
are recorded with the measurement system described in
Nahrsteadt et al. [3], and camera data are synchronized.
In a first step, the realtime EMG/BI classifier is used to
find all time instances of potential swallow intentions. In a
subsequent step we use the camera data to classify in realtime
if the EMG/BI pattern was induced by a swallow onset or
by a non-swallow related event. Only in the first case, a
stimulation is triggered.
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Figure 2. Two-step-classification process.

II. METHODS

A. EMG/BI-based classifier

The BI signal is downsampled from 2 kHz to 40 Hz by
taking a window of 50 samples, denoising it with a Wavelet
algorithm and taking the mean value as downsampled BI
value. Based on the work by Nahrstaedt et al. [1], changes
in the downsampled BI signal are detected by a modified
sliding window and bottom-up (SWAB) algorithm [4]
which is a piecewise linear approximation method (PLA).
The length of the approximated lines is defined by the
maximum error maxE between a line and the original data.
This concept is enhanced by an upper bound maxL of the
line length and a maximum difference maxD between the
start and end point of a line. The downsampled BI data
are continuously fed into the SWAB algorithm, that creates
lines. The parameters of the SWAB algorithm are set to
maxE = 1 Ω, maxD = 0.25 Ω and maxL = 1 s.
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In case a new line is found inside the SWAB algorithm,
features are calculated for the EMG/BI classifier. The fol-
lowing features are used:

• SNR of the EMG activity during the newest line,

• last four slope values from the line segments that
were found by the SWAB algorithm,

• SAX [5] word from the BI and EMG data [6] of the
last 0.5 seconds.

The SAX word contains ten symbols and uses an alphabet
size of 16 numbers. A random forest classifier is then used
to decide which newly created line segment intentionally
belongs to the beginning of a swallow.

B. Pre-analysis of camera data

The camera data is used for a second classification of the
FES trigger time points generated by the EMG/BI based al-
gorithm. To show how movements result into false classified
swallows during the swallowing of saliva and solid boluses,
we plotted true and false classified swallowstogether with
the movement speed of the lower lip over time in Fig 3 and
Fig. 4, respectively. It can be seen that chewing a solid bolus
increases the movement speed of the lips. A higher moving
speed is correlated with a higher number of false classified
swallows. This can be explained as follows: By moving the
jaw down the electrodes get shifted down along the larynx
which leads to a drop of BI as well. The activation of the
yaw muscles is measured as an EMG activity. Since both
effects occur simultaneously, the EMG/BI-based classifier
alone would trigger a false stimulation. These events need
to be suppressed by the additional camera-based classifier.
Movements of the head such as looking up and down or left
and right, did not show a strong relation to false stimulation
triggering in the data we recorded so far.
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Figure 3. Swallow onsets detected by EMG/BI-basedclassifier while
swallowing saliva.

C. Camera-based Classifier

For a proper classification, significant features have to
be extracted from the data in a time window before a
potential swallow onset. The first group of features models
the movement of the mouth and jaw. For that reason, the
moving speed of the upper and lower lip, the jaw and the
mouth corners were used as features. We use Eq. (1) to get
an approximation of the moving speed of a face part. The
landmarks xi(n) contained in a set L are differentiated and
rectified, summed up and divided by K which is the number
of elements in L. This is performed for each time instance
n. The definition of the landmarks and the position of the
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Figure 4. Swallow onsets detected by the EMG/BI-basedclassifier while
swallowing bread.

measurement electrodes are shown in Figure 1. We used four
different sets for feature calculation referring to the upper
and lower lip, the mouth corners and the jaw. The sets of
landmarks used for feature calculation are summarized in
Eq. (2).

speedL(n) =
1

K

∑
L

∣∣∣∣dxl(n)

dn

∣∣∣∣ (1)

LupperLib = {35, 37, 47}
LlowerLib = {41, 43, 51}
LmouthCorner = {33, 39}
Ljaw = {61}

(2)

A second group of features is used to determine if the
mouth is open and if the jaw is deflected downwards. Those
features are generated by calculating adistances measure
between certain landmarks according to Eq. (3) and Eq. (4).

mouthOpen(n) =

|x43(n)−x35(n)|+|x47(n)−x51(n)|+|x37(n)−x41(n)|
3

(3)

jawDown(n) = |x61(n)− x31(n)| (4)

The signals speedL, mouthOpen and jawDown which
we obtain from Eq. (1), Eq. (3) and Eq. (4) are used to
calculate the features according to Eq. (5). That is done by
the weighted summation of the values in an interval prior
to the potential stimulation trigger time instance nt with a
sample length I . We used a hanning function with a width
of two times I to weight the samples in the interval. Thus
the contribution of a sample to the sum decreases with the
distance to nt.

f =

I∑
i=0

w2I(I − i)Signal(nt − i) (5)

The classification of potential trigger points is done using
a vector support machine implementation by Chang et al.
[7]. We found that radial basis functions as kernel yield
the best results. The data was normalized with a standard
scaling procedure implemented in scikit-learn [8]. Thus, each
feature was normalized by first subtracting its mean and then
dividing by its variance. To find the best suited classifier, a
grid search on the parameters γ and C is performed. The
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parameter C weights the influence of the penalty term in
the cost function that is used for the vector support machine
optimization, whereas γ controls the width of the radial basis
function used as kernel.

D. Evaluation of both classifiers

The evaluation of the EMG/BI-based and camera-based
classifieris performed by using the leave-one- subject-out
method by which data from all but one subject are used for
training and the remaining data are used for testing. This
is repeated for each subject. The safety of the patient is
the most important issue. Every swallow intention that is
not detected barres the risk of aspiration. For that reason, a
suitable classification system needs to have a high sensitivity.
The sensitivity S is calculated as shown in Eq. 6. In our case
the sensitivity is a measure for the rate of correct classified
swallow intentions.

S =
true positives

true positives+ false negatives
(6)

III. RESULTS

We conducted experiments with five healthy subjects,
that were asked to perform three swallows of four different
boluses in five different head postures. This study was ap-
proved by the ethic board at the Charité Berlin (EA1/161/09).
Swallows in the data set have been automatically segmented
by using an offline swallow detection [6]. Additionally, the
data sets were manually inspecting to confirm or reject
found swallows or to mark non-found swallows. In total, 363
swallows are contained in the data set. The resulting data
were used as reference for the evaluation of the described
two classifiers.

A. EMG/BI-based classifier

The best training parameters for the random for-
est classifier are found to be n estimators = 40,
min samples leaf = 15, min samples split = 12 and
max depth = 8. A definition of the parameters can be found
in the documentation of scikit-learn [7]. The class weights
are adjusted inversely to the class frequency by setting the
weights option to balanced. The testing results for all subjects
are shown in Table I. As described by Nahrstaedt et al. [6],
the pharyngeal swallow phase results in a valley in the BI
signal with start, minimum and end point. The hyoid bone
and larynx have their maximum displacement around the
minimum point.

TABLE I. BI/EMG-BASED CLASSFIER: CONFUSION MATRIX.

Potential swallow onsets predicted positive predicted negative
true 335 28
false 273 16038

B. Camera-based classifier

After applying the grid search over the support vector
machine parameters γ and C we have chosen the best suited
parameter pair for our problem.Among all the classification
results we selected the pair with the highest specificity and
a sensitivity value above 90% (γ = 0, 82 · 10−6 and C =
689.96). The confusion matrix is shown in Table II. The
corresponding metrics is displayed in Table III. In average,
swallow onsets were detected 190 ms after the true begin of
a swallow and 369 ms before the maximal larynx elevation
was observed.

TABLE II. CAMERA-BASED CLASSIFIER: CONFUSION MATRIX.

FES trigger points predicted positive predicted negative
true 301 34
false 144 129

TABLE III. METRICS OF CAMERA CLASSIFICATION RESULT.

precision 64%
sensitivity 90%
specificity 42%

accuracy 67%

IV. DISCUSSION

The camera-based classifier reduced the number of re-
sulting false stimulations by 47%. However, the number
of resulting correct stimulations potential was also sligthy
reduced by 11%. The observed timing in the swallow onset
detection is sufficient for supporting an elevation of the
larynx and hyoid by FES. These preliminary resultsare a
starting point for further investigations. For practical use a
higher specificity would be desirable to enable a comfortable
therapy. Besides the need of a bigger data set to obtain
more generalized trainings data and a more robust evaluation.
The swallowing performance of dysphagia patients can be
improved by adopting special head postures as shown in
different publications [9]. The postures can be defined by
pitch and yaw angles of the head. The desired head posture
could be used to switch the stimulation system on and off.
This would suppress most of the disturbances and create
a more balanced class ratio for the classification system.
Those angles can be measured with the Intel RealSense
camera and used to give the patients a graphical biofeedback.
Combining these two techniques could dramatically increase
the stimulation precision.
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