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Abstract—Functional Electrical Stimulation (FES) provides a
neuroprosthetic interface to non-recovered muscle groups by
stimulating the affected region of the human body. FES in
combination with Brain-machine interfacing (BMI) has a wide
scope in rehabilitation because this system directly links the
cerebral motor intention of the users with its corresponding
peripheral muscle activations. In this paper, we examine the
effect of FES on the electroencephalography (EEG) during motor
imagery (left- and right-hand movement) training of the users.
Results suggest a significant improvement in the classification
accuracy when the subject was induced with FES stimuli as
compared to the standard visual one.

I. INTRODUCTION

The advent of Brain-machine interfacing (BMI) has opened
a direct communication pathway between the brain and the
environment in the form of robots, prosthesis, wheelchair or a
computer without any muscle intervention. BMI has immense
potential in facilitating rehabilitation for patients suffering
from stroke, amyotrophic lateral sclerosis, spinal injury and
physical disability [1]. A BMI system would drive a neuro-
prosthetic device to bridge the gap between the central nervous
system and peripheric muscles and in some instance even a
separate prosthesis. Electroencephalography (EEG) signals is
the most commonly used BMI recording device and signals re-
lated to limb movement (known as motor imagery signals) are
elicited as Event Related Desynchronization/Synchronization
(ERD/ERS) response [2], [3]. The BMI system decodes the
ERD/ERS signals to determine the movement as intended by
the user.

Functional Electrical Stimulation (FES) [4], [5] aims at
directly stimulating the muscles on the affected side of the
patient and it is reported that FES is capable of reconstructing
certain daily life skills [6]. Till date, many researchers [7],
[8], [9] have combined BMI with FES to directly link the
mental intention of the user with a muscular response. In
such a system, the BMI detects the motor intentions of the
user which in turn activates the FES device. FES activation
may affect the sensory pathways, if intact, which may, in turn
impact the cortical activity. Such phenomena may influence the
performance of the BMI. Gollee et al. in [8] found no major
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influence of FES on Steady-State Visually Evoked Potential
(SSVEP) signal. Takahashi et al. in [9] also found no effect
of FES on leg stimulation.

In this paper, we report the preliminary results of the effect
of electrical stimulation during a motor imagery training task
on healthy subjects and its comparison with visual stimuli.
Through this study, we aim at employing FES as a proprio-
ceptive feedback to the brain to improve the learning of the
subject both in terms of accuracy and time. If successful, this
system can accelerate the motor recovery process of the patient
by enhancing the motor learning in the brain.

II. MATERIALS AND METHODS

The EEG recording is conducted using a 14 channel Emotiv
Epoc neuro-headset with a sampling rate of 128Hz and an in-
built band-pass filter of 0.2-45Hz. The electrodes: AF3, F7,
F3, FC5, T7, P7, O1, 02, P8, T8, FC6, F4, F8 and AF4, are
arranged on the basis of the standard 10-20 system [10]. Three
healthy male subjects (2 right handed and one left handed),
participated in this experiment. Two subjects participated in
the BMI experiment as a first experience whereas one subject
was an experienced BMI user. In this experiment, we abide by
the norms of Helsinki Declaration of 1975, revised in 2000.
Prior to the experiments, the subjects are informed about the
purpose of the experiment and the tasks they have to perform.

Surface electrical stimulation is transmitted to induce the
hand extension tilting towards the back of the hand by ap-
plying the stimulation to the extensor digitorum muscle. It is
applied to each side of the hand respectively, corresponding to
right/left motor imagery task. The stimulus is delivered by a
computer-controlled stimulator (ProStim, MXM, France) with
PW modulation (PW max = 450 us) at a constant amplitude
and frequency (30 Hz). Each stimulation sequence consists
of a trapezoidal envelope train of PW (0.4 s ramp-up, 1.2 s
plateau, 0.4 s ramp-down).

The experiment designed for this work is divided into three
sessions: only visual, only FES and both visual-FES stimuli.
The sessions consist of instructing the subjects through a
sequence of repetitive stimuli to execute the corresponding
motor imagery task, which in our case, is left and right hand
movement. One sequence of stimulus is known as trial. A
trial for the visual stimulus is designed as follows: First, a
blank screen is projected to the subject for 20s, which provides
the baseline of the EEG. Then, a fixation ‘+’ is displayed on
the screen for 1s which is an indicator to the subject to get
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Fig. 1. Block diagram of our experimental setup during motor imagery
sessions where user stimuli is with conventional visual stimuli, electrical
stimulation stimuli or the combined, respectively.

ready for the task. Next, the instructions are provided to the
subject for 3 seconds in the form of arrows. According to the
direction of the arrow, the subject imagines either left or right
hand movement. Following the instructions, a blank screen
is again displayed for 1.5s-3.5s.The FES session is similar
to the visual one except in place of the arrows, stimulation
is directly induced in the fore-arm of the hand of interest,
without providing any visual information. In the Visual-FES
session, both the combined stimulations are time-synchronized
to each other. Each session is composed of 40 trials (20 for
each movement).

After acquisition, the incoming raw EEG signal is band-pass
filtered at 8-30 Hz. Then, common spatial filters (CSP) is ap-
plied to extract features relevant to left- and right-motor hand
movement EEG signals. CSP is a spatial filter widely used in
BMI because the spatial patterns contain highly discriminative
features between two classes [11]. In this study, we prepare the
feature vectors using 6 spatial filters which is then transferred
as inputs to a linear discriminant analysis (LDA) [12] classifier.
Finally, the classifier detects the corresponding motor intention
of the subject, i.e., left and right motor movement. A block
diagram of our experimental setup during Visual-FES session
is illustrated in Fig. 1.

III. RESULTS

In this paper, we first attempt to observe the difference
of the spatial patterns during the sessions: visual, FES and
visual+FES. For this purpose, we determine the power spectral
density (PSD) [13] of each spatial filters. The PSD distribution
for six spatial filters of subject 1 is shown in Fig. 2. As
observed from the figure, the patterns are highly discriminable
for the first four filters and they overlap in the last two. it is
also noted that FES+Visual session (in black) has the highest
power followed by Visual (in blue) session and lastly FES
session (in red) for the first three filters. A similar trend is
noted for the other two subjects too.

Next, we employ 10 cross validation [12] on the dataset,
where at every iteration, one block of data is randomly selected
for testing and the rest of the block are employed for training.
Table I presents the average classification accuracy (over 10
runs) and it is noted that for Subject 01 and 02 (with first
BMI experience) the accuracy during FES session increases
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Fig. 2. Power spectral density distribution of the six filters during Visual (in
blue-), FES (in red --) and Visual+FES (in black -.) sessions.

TABLE I
AVERAGE CLASSIFICATION RESULT (OVER 10 RUNS)

Subject Visual FES Visual + FES
ID session sessions sessions
01 68.11 254 | 7439 +£2.86 | 74.18 £+ 3.18
02 67.86 £ 2.07 | 73.37 £2.92 | 71.07 £ 3.01
03 71.22 £ 3.77 | 66.65 £+ 2.51 71.02 £+ 3.98

by 6.28% and 5.51% as compared its visual counterpart.
The difference between the FES and Visual+FES sessions are
small. On the other hand, Subject 03 (with previous BMI
experience) has a better result during the visual session than
the FES session. Thus, it can be inferred from this result that
subjects with no prior BMI training of motor imagery show a
significant improvement in learning when induced with FES.

IV. DISCUSSION

In this paper, we aimed at studying the effect of electrical
stimulation as a user stimuli for motor imagery classification
(left and right hand movement) in BMI. Fig. 2 shows a
significant difference of the spatial patterns during the three
stimuli sessions: visual, FES and visual+FES. Results on
Table I also shows a significant rise in accuracy for 2 (of
3) subjects which suggest a positive influence of FES during
motor imagery training of the subjects. It was noted that both
the subjects had no previous experience on BMI, then they
were not familiar with generating motor imagery with visual
stimuli. Visual stimuli are the widely accepted form of motor



training but the subject requires constant training to reach an
optimal result. Based on the results of this study, we can
infer that electrical stimulation can also be used for motor
training and it can potentially provide better performance
as it can make natural proprioceptive feedback related to
motor performance than visual stimuli which requires user’s
recognition regarding the visual cue. Further studies on a larger
group of subjects are required to validate this claim. Future
studies in this research will include studying the effect of FES
as proprioceptive neurofeedback training to BMI. This will
lead to an improvement in motor imagery classification which
helps would aid in neuroprosthetic or robot control [14].
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